

Littelfuse SiC Solution lineup

March 2024

Bradley Green

Business Development and Technical Sales Semiconductor Business Unit (SBU)

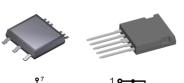
Rebooting Littelfuse SiC portfolio

~50 new part numbers planned rollout to Q2'2025

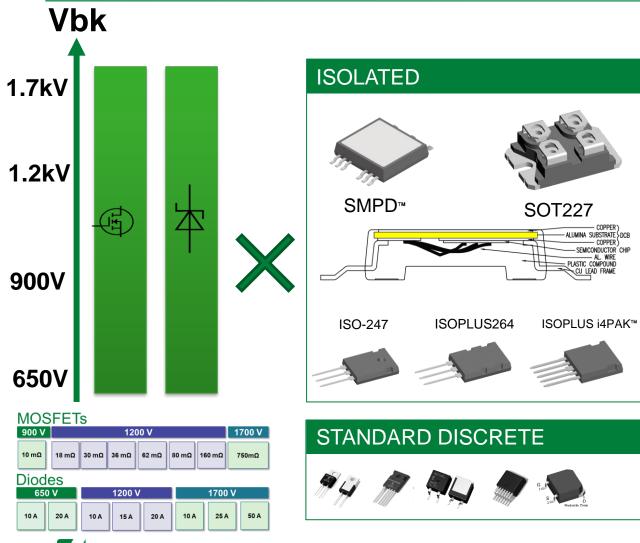
- → state of the art chip technology
- → SiC MOSFETs and SiC Schottky diodes for industrial applications

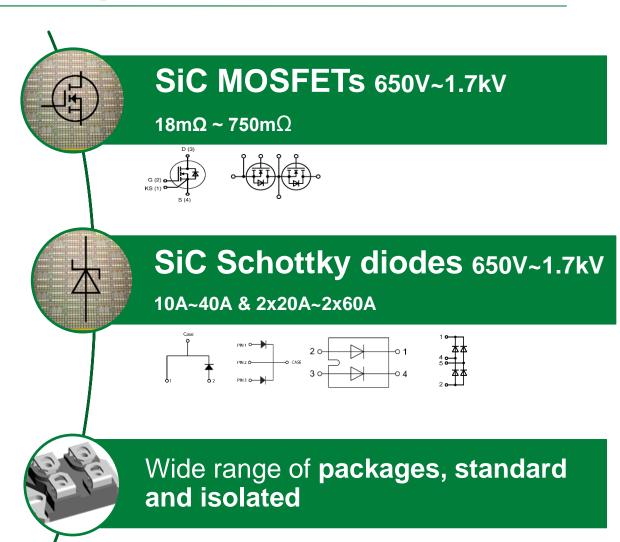
Commodity line

- → Standard discrete devices in common TH/SMT packages
- → Cost optimized


Performance / differentiated line

- → Littelfuse value added from isolated & multichip discrete packages
- → Modular design with the convenience of discrete packages
- → High integration / thermal performance / built-in isolation





A wide range of package x chip combinations

Commodity line

State of the art standard discrete devices

650V~1200V SiC MOSFETs – commodity line

- Advanced Planar gate SiC MOSFET
 - Ron.A 3.2~3.5mΩ.cm³
 - 15~18V gate control
- Competitive LT
- Cross reference list available
- Samples and data sheets available

V _{DSS (V)}	R _{DSON} (mΩ)	I _D @ 25°C (A)	TO247-4L HV (w/ Kelvin source)	TO263-7L (D ² PAK) (w/ Kelvin source)	TOLL 🙀
	25	100	IXSH100N65L2KHV	IXSA100N65L2-7	IXSG110N65L2K
650	40	60	IXSH60N65L2KHV	IXSA60N65L2-7	IXSG60N65L2K
	60	40	IXSH40N65L2KHV	IXSA40N65L2-7	IXSG40N65L2K
	13.5	150	IXSH150N120L2KHV		
	30	79	IXSH80N120L2KHV	IXSA80N120L2-7	
1200	40	65	IXSH65N120L2KHV	IXSA65N120L2-7	
	80	40	IXSH40N120L2KHV	IXSA40N120L2-7	
	160	20	IXSH20N120L2KHV	IXSA20N120L2-7	

Non released devices' schedule and characteristics subject to change without notice

R&D

Q1 25

R&D

Q2 24

High voltage SiC MOSFETs

- For auxiliary power supply
- TO268HV-2L package with high clearance for polluted environment

			Released	d R&D NRND
V _{DSS} (v)	R _{DSON} (mΩ)	TO247-3L	TO263-7L (D²PAK) (w/ Kelvin source)	TO268HV-2L (D ³ PAK)
1700	750	LSIC1MO170E750	LSIC1MO170T0750-TU LSIC1MO170T0750-TR	LSIC1MO170H0750-TU LSIC1MO170H0750-TR

650~1700V SiC Schottky diodes –commodity line

- SiC Schottky diodes 10A ~ 40A
- State of the art price and lead time
- Cross reference list

	I _{F (A)}	Single diode				Common c	Common cathode (N2)	
V _{RMM (V)}	Single/Multiple	TO252-2L (DPAK)	TO263-2L (D ² PAK)	TO220-2L	TO247-2L	TO263-2L (D ² PAK)	TO247-3L	
	10		LSIC2SD065D10A	DCK10I650PA	DCK10I650HA			
600/650	20/2*10		LSIC2SD065D20A		DCK20I650HA		DCK20C650HB	
	2*20					LSIC2SD065D40CC	LSIC2SD065E40CCA	
	10	DCK10I1200UZ	LSIC2SD120D10A	DCK10I1200PA	DCK10I1200HA			
	15				DCK15I1200HA			
4200	20 / 2*40		LSIC2SD120D20A		D.01/001/1000111		DCI/20C4200UD	
1200	20 / 2*10		DCK20I1200PC		DCK20I1200HA		DCK20C1200HB	
	30 / 2*15				DCK30I1200HA		DCK30C1200HB	
	40 / 2*20				DCK40I1200HA		DCK40C1200HB	
4700	10				LSIC2SD170B10			
1700	25				LSIC2SD170B25			

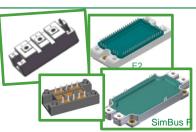
Q1 25

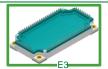
Orderable

Performance line

Isolated packages & multichip

Bridge the gap between standard discrete and modules


Power density High power, high performance


Project/customer specific

Big footprint, thick package

Complicated handling

Complete topology

Littelfuse advanced packages technology

Close to module performance

simpler manufacturing Standard building bricks

- Multisource, extreme price pressure, very strong incumbents
- Highly standardized, very high volumes
 - Customer's application special needs not taken into account

Complexity

1200V SiC MOSFETs ISO247 new lineup

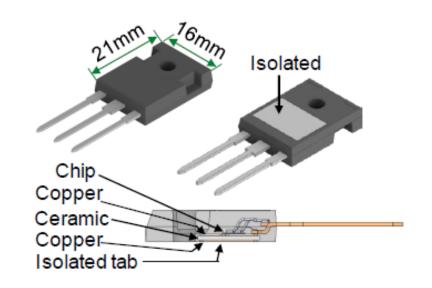
Non released devices' schedule and characteristics subject to change without notice

State of the art trench SiC MOSFET

- Industry leading Ron.A < $3m\Omega$.cm³
- Industry leading parasitics

-4V~+18V gate

0V gate switching

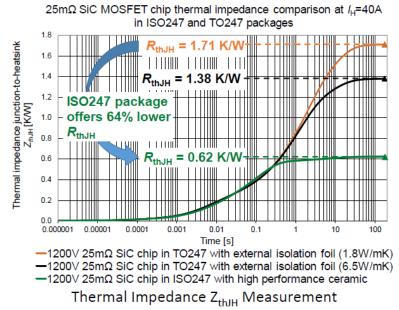

				Q1 20	
V _{DSS (V)}	R _{DSON} (mΩ)	I _D @ 25°C (A)	ISO247-3L (2500V~ isolation)	ISO247-4L (2500V~ isolation w/ Kelvin source)	
	18	80	IXSJ80N120R1	IXSJ80N120R1K	
1200	36	43	IXSJ43N120R1	IXSJ43N120R1K	
	62	25	IXSJ25N120R1	IXSJ25N120R1K	

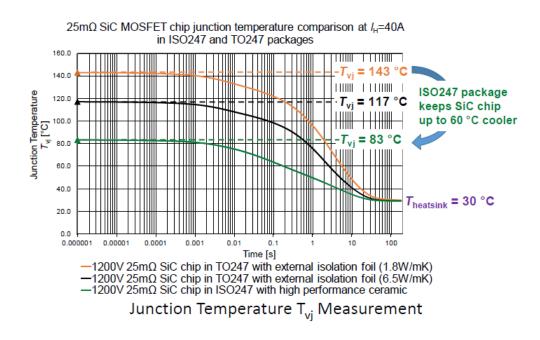
Advanced ceramic package

- AMB substrate
- 2.5kV isolation

High power industrial power supplies

- Can replace equivalent standard TO247 parts
- Reduced component count
- System level added value vs. standard discrete devices Interesting for application with high level of paralleling

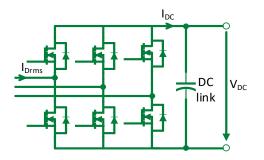


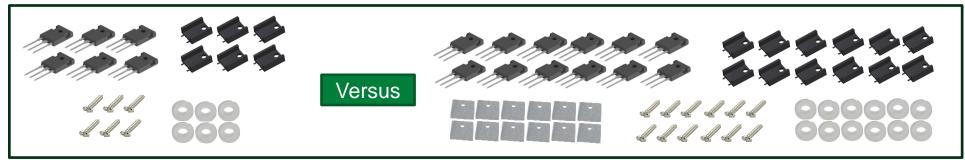

R&D

orderable

Thermal Performance Advantages: ISO247 vs. Standard discrete

- IXSJ MOSFET series, 1200V 18/36/65mΩ MOSFET in ISO247-3 and -4, release from Q4'24
- For industrial power supplies, designs with large number of paralleled devices
- Compared with a non isolated TO247 package, Littelfuse isolated packages offer
 - Up to 64% reduction in R_{thJH}, 60°C lower Tv_J, 50% more P_{out} at 20kW, T_{vi} 130°C
 - Measured with 1200V, 25mΩ SiC MOSFET, IH=40A, according to IEC 60747-8

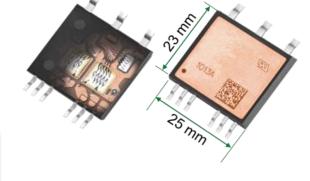


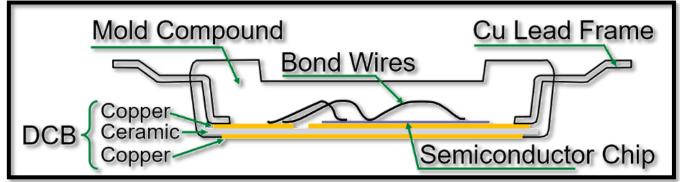

Copper

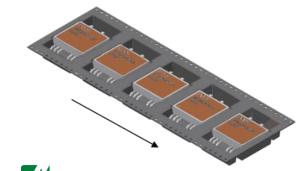
System Level Cost Saving Opportunity: ISO247 vs. **TO247**

Example 22 kW active front end converter for a DC charger

- Significant system level cost savings achieved from:
 - Lower component count, reduced space and size on the PCB.
 - Improved yield and quality by eliminating the external isolation foil

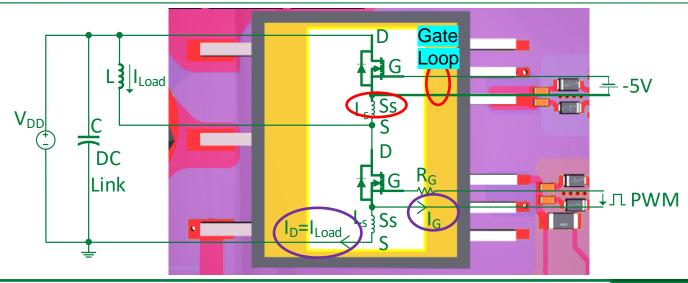



	ISO247-4	TO247-4
Total number of device	6	12
No. of isolation pad	No need	12
Mounting efforts	Simplified	12 screw, washer, heat-sink, man power, tooling
Minimum required PCB area	2500 mm ²	5000 mm ²


ISOPLUS™ SMPD – since 2012 Bridging the gap between modules and discrete

"Surface Mount Power Device"

■ Top side cooled isolated package using Direct Copper Bonded (DCB) or Active Metal Brazed (AMB) substrates

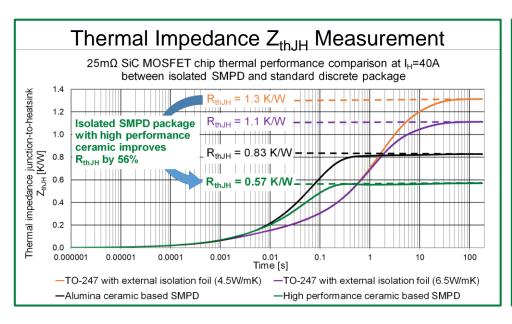


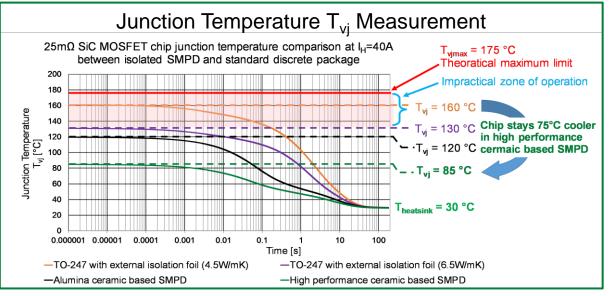
■ Key features & benefits

- Pick and place compatible, simplified mounting and production
- Top side cooling
- Top side electrically isolated, from 2.5kVrms (UL rated)
- 35% to 50% reduction of junction-heatsink R_{th} vs. non isolated packages, superior system-level thermal performance
- Shortened power loop, lower component count dential and Proprietary | Littelfuse, Inc. © 2024 13

ISOPLUS™ SMPD – improvements by integration

 Gate drive path is separated from load circuit thanks to kelvin source. 	Better gate control
Common source inductance L _s is excluded from gate loop	Faster switching Reduced gate oscillations
No negative feedback of load current into the gate loop	Improved EMI Less risk of parasitic turn-on
Minimized mutual parasitic inductance and coupling capacitance	Improved EMI
Minimized losses	Improved efficiency Lower T _{vi} , simplified thermal design

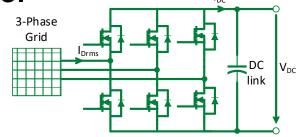


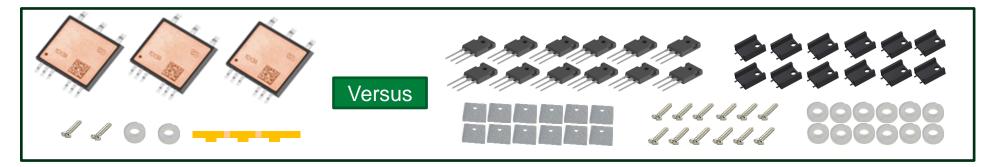

Thermal Performance Advantages: SMPD vs. TO247

Compared with a non isolated TO247 package, the SMPD offers

- At same drain current*
- With Al₂O₃ ceramic: a chip 40°C cooler, 36% reduction in thermal resistance R_{th,JH}, 30% reduction in ΔT_{JH}
- With Si₃N₄ ceramic: a chip 75°C cooler, 56% reduction in thermal resistance R_{th,IH}, 58% reduction in ΔT_{,IH}

*measured with 1200V, 25mΩ SiC MOSFET, IH=40A, according to IEC 60747-8

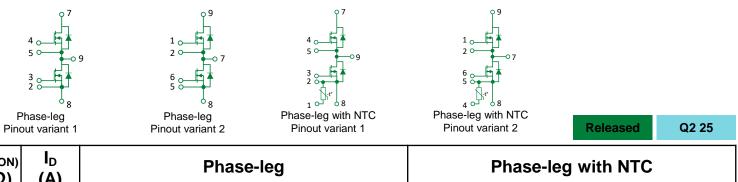

PCIM 2023, Littelfuse poster



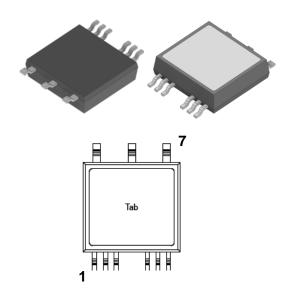
System Level Cost Saving Opportunity: SMPD vs. **TO247**

Example 22 kW active front end converter for a DC charger

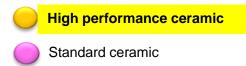
- Significant system level cost savings achieved from:
 - Lower component count, reduced space and size on the PCB.
 - Pick & place manufacturing
 - Improved yield and quality by eliminating the external isolation foil



	SMPD	TO-247
Total number of device	3	12
No. of isolation pad	No need	12
Mounting efforts	Simplified	12 screw, washer, heat-sink, man power, tooling
Minimum required PCB area	2400 mm ²	5000 mm ²


SiC MOSFETs Half Bridges in SMPD: 1200V

Non released devices' schedule and characteristics subject to change without notice


- State of the art trench SiC MOSFETs in SMPD package
- Lower thermal resistance, higher power dissipation and cooler chip compared to discretes
- Available in two different pin-out and integrated temperature sensing

V _{DSS} (V)	R _{DS(ON)} (mΩ)	I _D (A)	Phas	e-leg Phase-leg with NTC		
	@ 25°C	@ 25°C	SMPD-B	SMPD-B	SMPD-B	SMPD-B
			Pinout variant 1	Pinout variant 2	Pinout variant 1	Pinout variant 2
	18	80	MCR60P1200	MCR59P1200LB •	MCR60P1200TLB •	MCR59P1200TLB •
	25	55	MCB40P1200LB •			
	36	43	MCR30P1200LB •	MCR29P1200LB •	MCR30P1200TLB •	MCR29P1200TLB •
1200	40	38	MCB30P1200LB •			
	62	25	MCR20P1200LB •	MCR19P1200LB •	MCR20P1200TLB •	MCR19P1200TLB •
	80	25	MCB20P1200LB •			
	160	19.5	MCL10P1200LB •			

Comprehensive lineup / roadmap

650V~1200V SiC MOSFETs new lineup

Non released devices' schedule and characteristics subject to change without notice

Released

R&D Next sample / Release

NRND

V _{DSS} (V)	R _{DSON} (mΩ)	I _D @ 25°C (A)	ISO247-3L (2500V~ isolation)	ISO247-4L (2500V~ isolation w/ Kelvin source)	TO247-4L (w/ Kelvin source)	TO263-7L (D ² PAK) (w/ Kelvin source)	TOLL 🔷	SOT-227 (2500V~ isolation, w/ Kelvin source)
	25	100			IXSH100N65L2KHV Mar 25/Apr 25	IXSA110N65L2-7TR Mar 25/Apr 25	IXSG110N65L2K Mar 25/Apr 25	
650	40	60			IXSH60N65L2KHV Mar 25/Apr 25	IXSA60N65L2-7TR Mar 25/Apr 25	IXSG60N65L2K Mar 25/Apr 25	
•	60	40			IXSH40N65L2KHV May 25/Apr 25	IXSA40N65L2-7TR May 25/Apr 25	IXSG40N65L2K May 25/Apr 25	
900	10	130			may zon pr zo	ay 20/14p. 20	a, 20/14/2	IXFN130N90SK
	13.5	150			IXSH150N120L2KHV June 25			
	18	80	IXSJ80N120R1 Now / Mar ² 5	IXSJ80N120R1K Janʻ25	34.76			
	21	75						IXFN75N120SK
	30	79			IXSH80N120L2KHV	IXSA80N120L2-7TR		
	32	55						IXFN55N120SK
1200	36	43	IXSJ43N120R1	IXSJ43N120R1K Q4'24 / Jan'25				
Ì	40	65			IXSH65N120L2KHV Mar 25 / Apr 25	IXSA65N120L2-7TR Mar 25 / Apr 25		
	62	25	IXSJ25N120R1 Now / Mar'25	IXSJ25N120R1K Q4'24		·		
	75	30						IXFN30N120SK Now/Mar'25
	80	40			IXSH40N120L2KHV	IXSA40N120L2-7TR		
	160	20			IXSH20N120L2KHV April 25	IXSA20N120L2-7TR April 25		

High voltage SiC MOSFETs

- For auxiliary power supply
- TO268HV-2L package with high clearance for polluted environment

			Released	R&D Release NRND
V _{DSS} (v)	R _{DSON} (mΩ)	TO247-3L	TO263-7L (D²PAK) (w/ Kelvin source)	TO268HV-2L (D³PAK)
1700	750	LSIC1MO170E750	LSIC1MO170T0750-TU LSIC1MO170T0750-TR	LSIC1MO170H0750-TU LSIC1MO170H0750-TR

SiC Schottky diodes – new lineup 650-1200kV

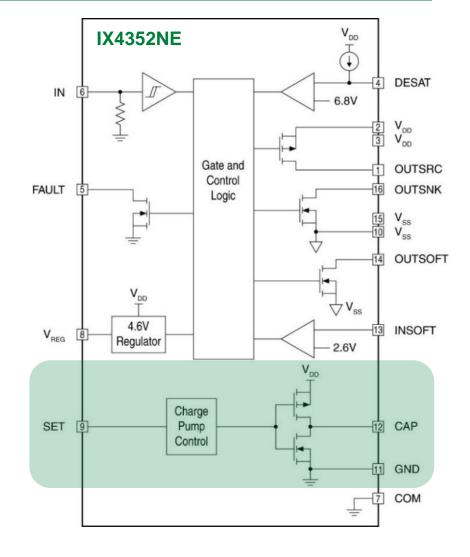
						0	rderable R&D
V	I _{F (A)} Single/Multiple	Single diod	de ,	Common cathode (NRI) COST			
V _{RMM (V)}		TO252-2L (DPAK)	TO263-2L (D²PAK)	TO220-2L	TO247-2L	TO263-2L (D²PAK)	TO247-3L
	10		LSIC2SD065D10A	DCK10I650PA	DCK10I650HA		
600/650	20/2*10		LSIC2SD065D20A		DCK20I650HA		DCK20C650HB
	2*20					LSIC2SD065D40CC	LSIC2SD065E40CCA
	10	DCK10I1200UZ May 25	LSIC2SD120D10A	DCK10I1200PA	DCK10I1200HA		
	15				DCK15I1200HA		
1200	20 / 2*10		LSIC2SD120D20A DCK20I1200PC TBC		DCK20I1200HA		DCK20C1200HB
	30 / 2*15				DCK30I1200HA		DCK30C1200HB
	40 / 2*20				DCK40I1200HA		DCK40C1200HB

Non released devices' schedule and characteristics subject to change without notice

SiC Schottky diodes (2/2)

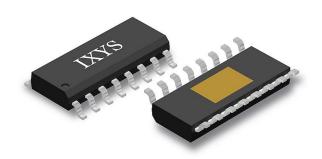
Non released devices' schedule and characteristics subject to change without notice

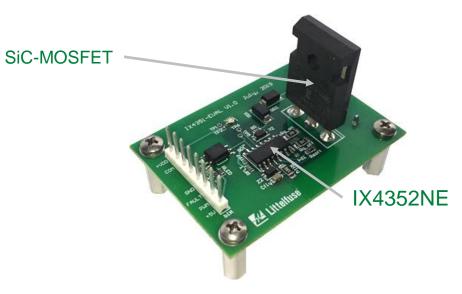
				Prod R&D ENG/Release	Idea NRND
.,	I _{F (A)}	1PH rectif	ier bridge	本本 6 **********************************	Dual 20 Dual
V _{RMM (V)}		ISOPLUS SMPD-B	ISOPLUS I4-PAC	SOT227	SOT227
	2*60				DCL120X650NA Now / Q1'25
	10		DCL15B1200FC Now / Q2'25		
	20	DCL30B1200LB Now / Q2'25			
	2*20				LSIC2SD120N40PA/
1200	50			DCG80B1200NA / DCG81B1200NA	
	2*40				LSIC2SD120N80PA/
	2*60				LSIC2SD120N120PA /
	2*100				DCG200X1200NA


Related products

IX4352NE Driver for SiC-MOSFET

- Unique 9A sink/source low-side driver for SiC-MOSFETs and high power IGBTs
- +25V / -10V Adjustable Output Gate Drive Voltage Range
- Simplify System Design
 - Programmable Charge Pump Regulator for Negative Gate Drive
 - No need for external negative gate drive supply
 - TTL/CMOS Logic Level Input (referenced to GND)
 - No logic input level shifting needed
- Extensive Protection
 - 1. **DESAT** Desaturation Detection
 - Detects over current condition and initiates Soft Turn-off
 - 2. UVLO Undervoltage Lockout
 - Prevent turn-on with insufficient gate voltage
 - **3.** TSD Thermal Shutdown
 - Prevents driver IC overheating
 - 4. FAULT Output
 - Signal fault condition to microcontroller

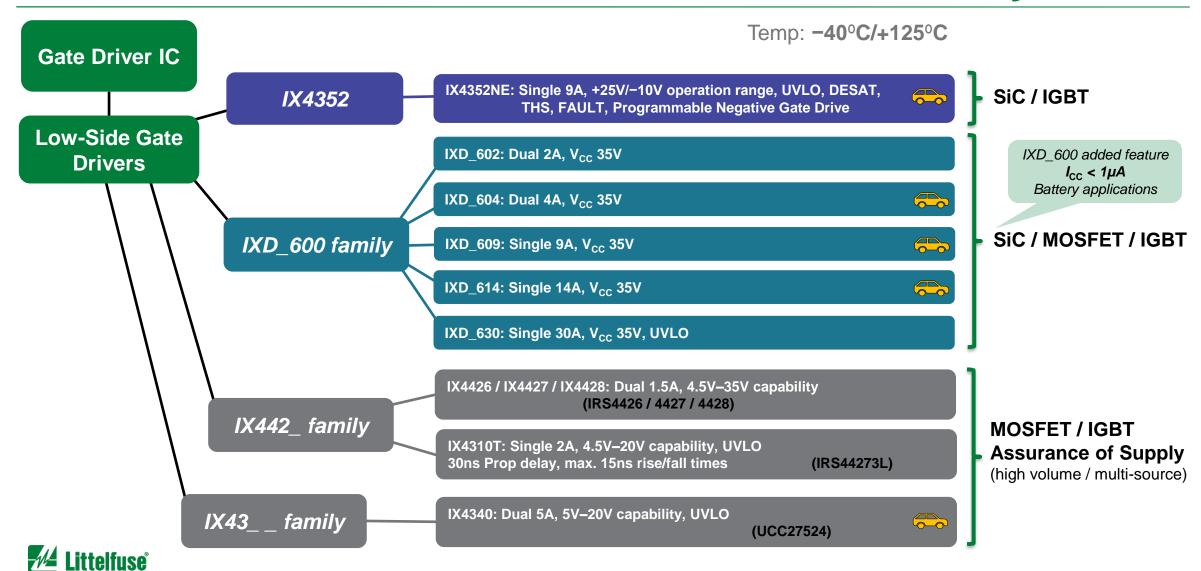




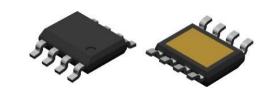
IX4352NE – Low-Side SiC and IGBT Driver (continued)

Markets / Applications

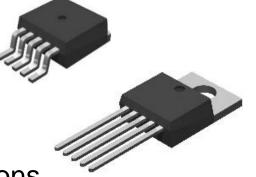
- Industrial
 - DC-DC converters
 - Adaptors
 - **Battery Chargers**
 - including EV/PHEV/FCV on-board and off-board chargers
 - Motor controllers
 - Power inverters
 - including solar inverters



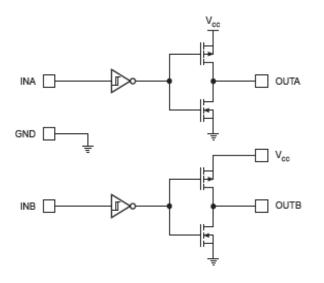
IX4352NE Evaluation Board


Littelfuse Gate Driver Product Portfolio Summary

> = AEC-Q100 version available


IXD 600 Series Low-side Gate Drivers

- 2A 30A output current capability
 - IXD_602 dual 2A
 - IXD 604 dual 4A
 - IXD_609 single 9A
 - IXD_614 single 14A
 - IXD_630 single 30A
- Wide operating voltage range: 4.5V to 35V
- Wide portfolio of packages:
 - DIP, SOIC, Power SOIC, DFN, TO-220, TO-263
- AEC-Q100 qualified automotive grade versions
 - IXD 604SI dual 4A
 - IXD_609SI single 9A
 - IXD_614SI single 14A



SMFA Series – Asymmetrical TVS for SiC MOSFET& IGBT gate protection

Problem/Solution

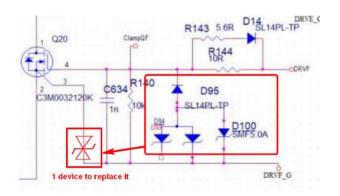
The SMFA Series are Asymmetrical TVS diodes designed specifically to protect SiC MOSFETs gates from overvoltage events. The faster switching speeds of SiC MOSFETs (as compared to Silicon MOSFETs and IGBTs) combined with layout and parasitic elements causes ringing and overshoot phenomena on the gate drive circuit that can be mitigated by the SMFA Series.

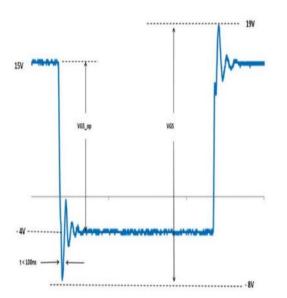
As SiC MOSFETs have a different negative gate voltage rating from the positive one, the asymmetrical SMFA Series is ideal in offering a single component solution.

- Single component SiC MOSFET gate protection with asymmetrical gate voltage protection
- Compact, 1mm low profile, SOD123-FL package
- Protection against known SiC MOSFET gate reliability issues.

Features

- Low Clamping Voltage for negative gate drive, $V_C < 8 \text{ V}$ @ 2 A (10/1000 µs)
- Variety of positive Standoff Voltages, V_{BR} 15 ~ 20 V compatible with popular SiC MOSFETS and IGBT's
- Stable capacitance over wide range of operating frequency
 (2 MHz) compatible with SiC MOSFET applications


Markets/Applications


- Al/Data center Server Power Supplies
- High Efficiency power for EVI
- High Reliability power supplies for Semiconductor/Industrial equipment

SiC MOSFET Gate Protected by one asymmetric TVS Diode

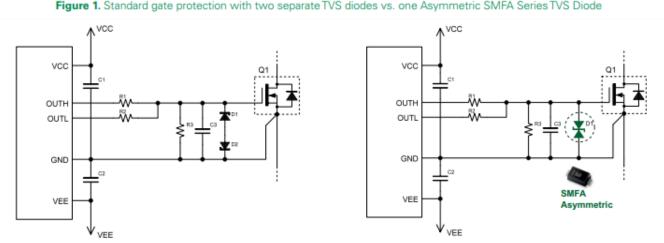
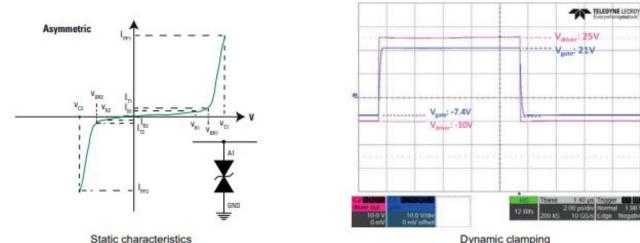



Figure 1. Standard gate protection with two separate TVS diodes vs. one Asymmetric SMFA Series TVS Diode

Local resources supporting our global customers

Expertise Applied | Answers Delivered